题目内容
【题目】若函数f(x)=e|x﹣a|(a∈R)满足f(1+x)=f(﹣x),且f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是 .
【答案】(﹣∞,﹣ ]∪[ ,+∞)
【解析】解:函数f(x)=e|x﹣a|(a∈R)的图象关于直线x=a对称, 若函数f(x)满足f(1+x)=f(﹣x),
则函数f(x)的图象关于直线x= 对称,
即a= ,
故函数f(x)=e|x﹣a|= ,
故函数f(x)在(﹣∞, ]上为减函数,在[ ,+∞)为增函数,
若f(x)在区间[m,m+1]上是单调函数,
则m≥ ,或m+1≤ ,
解得:m∈(﹣∞,﹣ ]∪[ ,+∞),
所以答案是:(﹣∞,﹣ ]∪[ ,+∞)
【考点精析】根据题目的已知条件,利用复合函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |