题目内容
16.掷两颗均匀的骰子,则点数之和为7的概率等于( )A. | $\frac{1}{18}$ | B. | $\frac{1}{9}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
分析 由题意知本题是一个古典概型,试验发生包含的事件是抛掷两颗骰子,共有6×6种结果,满足条件的事件是点数之和是7,可以列举出所有的事件,共有6种结果,得到概率.
解答 解:由题意知本题是一个古典概型,
试验发生包含的事件是抛掷两颗骰子,共有6×6=36种结果,
满足条件的事件是点数之和是7,可以列举出所有的事件
(1,6)(2,5)(3,4)(4,3)(5,2)(6,1),共有6种结果,
根据古典概型概率公式得到P=$\frac{6}{36}$=$\frac{1}{6}$,
故选:C.
点评 本题考查古典概型,是一个典型的古典概型问题,本题可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是大纲对这一部分的要求.
练习册系列答案
相关题目
7.已知f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{1,x<0}\end{array}\right.$.则不等式f(x2)>f(3-2x)的解集为( )
A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-3)∪(1,+∞) | C. | (-∞,-3)∪($\frac{1}{2}$,+∞) | D. | (-∞,-1)∪($\frac{1}{2}$,+∞) |