题目内容
已知向量
=(sinx,1),
=(
cosx,
),函数f(x)=(
+
)•
.
(1)求函数f(x)的最小正周期T及单调增区间;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,A为锐角,a=2
,c=4且f(A)是函数f(x)在[0,
]上的最大值,求△ABC的面积S.
m |
n |
3 |
1 |
2 |
m |
n |
m |
(1)求函数f(x)的最小正周期T及单调增区间;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,A为锐角,a=2
3 |
π |
2 |
(1)∵向量
=(sinx,1),
=(
cosx,
),
∴
+
=(sinx+
cosx,
),
∴f(x)=(
+
)•
=sin2x+
sinxcosx+
=
(1-cos2x)+
sin2x+
=
sin2x-
cos2x+2=sin(2x-
)+2,
∵ω=2,∴T=
=π;
令2kπ-
≤2x-
≤2kπ+
(k∈Z),解得:kπ-
≤x≤kπ+
(k∈Z),
则函数f(x)的单调增区间为[kπ-
,kπ+
](k∈Z);
(2)由(1)得f(A)=sin(2A-
)+2,
∵A∈[0,
],∴2A-
∈[-
,
],
∴-
≤sin(2A-
)≤1,即
≤f(A)≤3,
∴当2A-
=
,即A=
时,f(A)的最大值为3,
又a=2
,c=4,cosA=
,
∴由余弦定理a2=b2+c2-2bccosA得:12=b2+16-4b,即b2-4b+4=0,
整理得:(b-2)2=0,解得:b=2,
则S△ABC=
bcsinA=
×2×4×
=2
.
m |
n |
3 |
1 |
2 |
∴
m |
n |
3 |
3 |
2 |
∴f(x)=(
m |
n |
m |
3 |
3 |
2 |
=
1 |
2 |
| ||
2 |
3 |
2 |
| ||
2 |
1 |
2 |
π |
6 |
∵ω=2,∴T=
2π |
2 |
令2kπ-
π |
2 |
π |
6 |
π |
2 |
π |
6 |
π |
3 |
则函数f(x)的单调增区间为[kπ-
π |
6 |
π |
3 |
(2)由(1)得f(A)=sin(2A-
π |
6 |
∵A∈[0,
π |
2 |
π |
6 |
π |
6 |
5π |
6 |
∴-
1 |
2 |
π |
6 |
5 |
2 |
∴当2A-
π |
6 |
π |
2 |
π |
3 |
又a=2
3 |
1 |
2 |
∴由余弦定理a2=b2+c2-2bccosA得:12=b2+16-4b,即b2-4b+4=0,
整理得:(b-2)2=0,解得:b=2,
则S△ABC=
1 |
2 |
1 |
2 |
| ||
2 |
3 |
练习册系列答案
相关题目