题目内容
【题目】已知点,点是圆上任意一点,线段的垂直平分线与半径交于点,当点在圆上运动时,
(1)求点的轨迹的方程;
(2)过作直线与曲线相交于两点, 为坐标原点,求面积的最大值.
【答案】(1);(2)当且仅当时, 有最大值.
【解析】试题分析:(1)根据垂直平分线性质得,从而可得,再根据椭圆定义确定轨迹及其方程(2)先设直线点斜式方程,与椭圆联立方程组结合韦达定理可得,再根据的面积公式可得关于k的分式函数,最后利用基本不等式求最值
试题解析:(1)由已知线段的垂直平分线与半径交于点,
所以,而,
所以,因此点的轨迹是以为焦点,
长轴长为4的椭圆,所以所以的轨迹的方程是;
(2)设直线的方程是
将直线的方程代入曲线的方程可得,
显然,且,,
=====,
而,
因此当且仅当时, 有最大值.
【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳远(单位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳绳(单位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
(A)2号学生进入30秒跳绳决赛
(B)5号学生进入30秒跳绳决赛
(C)8号学生进入30秒跳绳决赛
(D)9号学生进入30秒跳绳决赛
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程=x+必过(,);
④在一个2×2列联表中,由计算得K2=13.079,则有99%以上的把握认为这两个变量间有关系.
其中错误的个数是( )
本题可以参考独立性检验临界值表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
A. 0 B. 1
C. 2 D. 3