题目内容
【题目】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y= (其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
【答案】(1) 见解析(2)见解析
【解析】试题分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=t2+利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.
试题解析:
(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).
将其分别代入y=,
得解得,
(2)①由(1)知,y= (5≤x≤20),
则点P的坐标为,设在点P处的切线l交x,
y轴分别于A,B点,y′=-,
则l的方程为
y-=- (x-t),
由此得A,B.
故f(t)== ,t∈[5,20].
②设g(t)=t2+,则g′(t)=2t-.
令g′(t)=0,解得t=10.
当t∈(5,10)时,g′(t)<0,g(t)是减函数;
当t∈(10,20)时,g′(t)>0,g(t)是增函数.
从而,当t=10时,函数g(t)有极小值,也是最小值,
所以g(t)min=300,此时f(t)min=15.
答 当t=10时,公路l的长度最短,最短长度为15千米.
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过3S微克/立方米, 的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
组别 | 浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从的年平均度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区的24小时平均浓度符合环境空气质量标准的天数为,求的分布列和数学期望.