题目内容
(2014·佛山模拟)数列{an}满足an+an+1=
(n∈N*),a2=2,Sn是数列{an}的前n项和,则S2015为( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
A.502 | B.504 | C.![]() | D.2015 |
A
因为an+an+1=
(n∈N*),
所以a1=
-a2=
-2,a2=2,a3=
-2,a4=2,…
故a2n=2,a2n-1=
-2,
所以S2015=1008a1+1007a2=1008×
+1007×2=502.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
所以a1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
故a2n=2,a2n-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824420274.png)
所以S2015=1008a1+1007a2=1008×
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050824513514.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目