题目内容

【题目】已知
(1)求sin(α+β)的值;
(2)求cos(α﹣β)的值.

【答案】
(1)

解:∵已知

+α为钝角,sin( +α)=

+β∈( ,π),cos( +β)=﹣

∴sin(α+β)=﹣sin(π+α+β)=﹣sin[( +α)+( +β)]

=﹣sin( +α)cos( +β)﹣cos( +α)sin( +β)=﹣ (﹣ )﹣(﹣ =


(2)

cos(α﹣β)=cos(β﹣α)=sin[﹣( +α)+( +β)]

=sin( +β) cos( +α)﹣cos( +β) sin( +α)= + =﹣


【解析】(1)利用同角三角函数的基本关系求得sin( +α)和cos( +β)的值,再利用两角差的正弦公式求得要求式子的值.(2)根据cos(α﹣β)=sin[﹣( +α)+( +β)],利用两角差的正弦公式,求得要求式子的值.
【考点精析】认真审题,首先需要了解两角和与差的余弦公式(两角和与差的余弦公式:),还要掌握两角和与差的正弦公式(两角和与差的正弦公式:)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网