题目内容

定义在R上的奇函数f(x)和定义在{x|x≠0}上的偶函数g(x)分别满足f(x)=
2x-1(0≤x≤1)
1
x
(x≥1)
,g(x)=log2x(x>0),若存在实数a,使得f(a)=g(b)成立,则实数b的取值范围是(  )
A、[-2,2]
B、[-2,-
1
2
]∪[
1
2
,2]
C、[-
1
2
,0)∪(0,
1
2
]
D、(-∞,-2]∪[2,+∞)
考点:分段函数的应用
专题:计算题,函数的性质及应用
分析:先求x≥0时,f(x)的值域为[0,1],再由f(x)是定义在R上的奇函数,求出x≤0时f(x)的值域为[-1,0],
从而得到在R上的函数f(x)的值域为[-1,1].由g(x)为偶函数,求出g(x)的表达式,由条件可令-1≤
log2|b|≤1.解出即可.
解答:解:∵f(x)=
2x-1(0≤x≤1)
1
x
(x≥1)

∴当0≤x≤1时,2x-1∈[0,1],
当x≥1时,
1
x
∈(0,1],
即x≥0时,f(x)的值域为[0,1],
∵f(x)是定义在R上的奇函数,∴x≤0时f(x)的值域为[-1,0],
∴在R上的函数f(x)的值域为[-1,1].
∵定义在{x|x≠0}上的偶函数g(x),x>0的g(x)=log2x,
∴g(x)=log2|x|(x≠0)
∵存在实数a,使得f(a)=g(b)成立,
∴令-1≤g(b)≤1.
即-1≤log2|b|≤1.
即有
1
2
≤|b|≤2,
1
2
≤b≤2或-2≤b≤-
1
2

故选:B.
点评:本题考查分段函数及运用,考查分段函数值域,注意各段的情况,考查函数的奇偶性及应用,考查对数不等式的解法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网