题目内容
10.下列不等式中无解的是( )A. | x2+2x-1≤0 | B. | x2+4x+4≤0 | C. | 4-4x-x2<0 | D. | 2-3x+2x2≤0 |
分析 分析不等式对应函数的图象和性质,及对应方程根的个数,可得结论.
解答 解:x2+2x-1=0的△=8>0,故不等式x2+2x-1≤0有解;
x2+4x+4=0的△=0,故不等式x2+4x+4≤0有解;
y=4-4x-x2的图象开口朝下,故不等式4-4x-x2<0有解;
2-3x+2x2=0的△=-7<0,故不等式2-3x+2x2≤0无解;
故选:D.
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
1.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,O为原点,在椭圆上存在一个点P使得△OFP为等边三角形,则椭圆的离心率为( )
A. | $\sqrt{3}$-1 | B. | 2-$\sqrt{3}$ | C. | $\frac{{\sqrt{5}}}{2}-1$ | D. | $\frac{{\sqrt{5}}}{2}-1$ |
18.已知点A(0,1),向量$\overrightarrow{AC}$=(-4,-3),若向量$\overrightarrow{BC}$=(-7,-4),则B点的坐标为( )
A. | (-3,2) | B. | (4,5) | C. | (3,2) | D. | (-3,-2) |
5.长方体ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,则$\overrightarrow{A{C}_{1}}$=( )
A. | $\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$ | B. | $\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$ | C. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$ | D. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$ |