题目内容

【题目】医院为筛查某种疾病,需要血检,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,需要检验次;

方式二:混合检验,把每个人的血样分成两份,取个人的血样各一份混在一起进行检验,如果结果是阴性,那么对这个人只作一次检验就够了;如果结果是阳性,那么再对这个人的另一份血样逐份检验,此时这份血液的检验次数总共为.

1)假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验岀来的概率;

2)假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性结果的概率为.现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

①运用概率统计的知识,若,试求关于的函数关系式

②若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.

参考数据:.

【答案】12)①的最大值为12.

【解析】

1)记恰好经过3次检验就能把阳性样本全部检验出来为事件,计算概率得到答案.

2)①计算,根据,计算得到答案.

,所以,设,求导得到单调区间,计算得到最值.

1)记恰好经过3次检验就能把阳性样本全部检验出来为事件,

.

2)①的取值为,所以

的取值为1,计算

所以

,得,所以.

,所以,即.

时,上单调递增;

时,上单调递减.

所以的最大值为12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网