题目内容

【题目】已知数列的前项和为,且.

1)求证:数列是等差数列;

2)设,求.

【答案】1)证明见解析;(2.

【解析】

1)可采用作差法由an=SnSn1求得an=2an1+2n1,再由bn,表示出bn+1bn,故得证数列是首项为,公差为的等差数列;

2)由(1)所求bn通项公式反解出an=(n+2)2n1,化简得Sn= (n+1)2n1,结合错位相减法即可求解;

1Sn=2an2n1,可得a1=S1=2a121,即有a1=3 n≥2时,an=SnSn1=2an2n12an1+2n1+1,可得an=2an1+2n1,由bn,可得bn+1bn

则数列{bn}是首项为,公差为的等差数列;

2)由(1)可得bn(n1),即an=(n+2)2n1 Sn=2an2n1=(n+1)2n1 Tn=S1+S2+…+Sn=22+34+48+…+(n+1)2nn 2Tn=24+38+416+…+(n+1)2n+12n,相减可得﹣Tn=4+4+8+16+…+2n(n+1)2n+1+n=2(n+1)2n+1+n,化简可得Tn=n2n+1n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网