题目内容
【题目】某工厂拟造一座平面为长方形,面积为的三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为元,中间两道隔墙的造价为元,池底的造价为元,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?
【答案】, .
【解析】试题分析:应用问题首先要认真细致的审题,逐字逐句的读题,把实际问题转化为数学问题.首先根据提议设出未知数,根据各项造价表示出总造价建立函数模型,根据实际需要写出函数的定义域,由于,借助a,b关系进行减元,化为只含有a的函数关系,再利用均值不等式求最值.
试题解析:
设污水处理水池的长、宽分别为,总造价为y元,
则,
,
易知函数是减函数,所以当时总造价最低,
最低造价为45000元.
练习册系列答案
相关题目