题目内容
已知抛物线
:
,焦点为
,其准线与
轴交于点
;椭圆
:分别以
为左、右焦点,其离心率
;且抛物线
和椭圆![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
的一个交点记为
.
(1)当
时,求椭圆
的标准方程;![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604923332.jpg)
(2)在(1)的条件下,若直线
经过椭圆
的右焦点
,且
与抛物线
相交于
两点,若弦长
等于
的周长,求直线
的方程
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604611339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604643823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604658353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604721266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604736333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604783448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604799439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604611339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604845156.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604861399.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604877369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604923332.jpg)
(2)在(1)的条件下,若直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604658353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604986164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604611339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605048423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605064423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605079654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604923332.jpg)
(1)当
时,F
(1,0),F
(-1,0) 设椭圆
的标准方程为
(
>
>0),
∴
=1,
=
∵
,∴
=2,
=
故椭圆
的标准方程为
="1.------" ---4分
(2) (ⅰ)若直线
的斜率不存在,则
:
=1,且A(1,2)
,B(1,-2),∴
=4
又∵
的周长等于
=2
+2
=6![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606468237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605657422.png)
∴直线
的斜率必存在.-----6分
ⅱ)设直线
的斜率为
,则
:
由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606889904.png)
∵直线
与抛物线
有两个交点A,B
∴
,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606951418.png)
设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606967867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606983158.png)
则可得
,
…………………8分
于是
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016072631102.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016072951139.png)
=
=
…………10分
∵
的周长等于
=2
+2
=6
∴由
=6,解得
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607591360.png)
故所求直线
的方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604877369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605142240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605157195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605204766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605220283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605235299.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605251249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605267352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605282338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605298527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605220283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605235299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605501344.png)
故椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604767372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605532669.png)
(2) (ⅰ)若直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604721266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605625172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605657422.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605079654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605859840.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605220283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605251249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606468237.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605657422.png)
∴直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
ⅱ)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606671312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606702610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606873961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606889904.png)
∵直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604611339.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016069361166.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606951418.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606967867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606983158.png)
则可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606998821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607014448.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605657422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607061697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016072631102.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016072951139.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232016073261010.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607341670.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605079654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607373815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605220283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201605251249.png)
∴由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607341670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201606671312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607591360.png)
故所求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201604939280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823201607622694.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目