题目内容
【题目】如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.
(1)若,证明:BE⊥CD;
(2)若,求点E到平面SBD的距离.
【答案】(1)见解析;(2)点E到平面SBD的距离为.
【解析】
(1)在线段上取一点使,连接, 可得垂直.再证明垂直平面,所以垂直,又垂直.由此得垂直平面,从而可得结果;(2)先求得,再求得,设点到平面的距离为,则由得,从而可得结果.
(1)因为,所以,在线段CD上取一点F使,连接EF,BF,则EF∥SD且DF=1.
因为AB=1,AB∥CD,∠ADC=90°,
所以四边形ABFD为矩形,所以CD⊥BF.
又SA⊥平面ABCD,∠ADC=90°,
所以SA⊥CD,AD⊥CD.
因为AD∩SA=A,所以CD⊥平面SAD,
所以CD⊥SD,从而CD⊥EF.
因为BF∩EF=F,所以CD⊥平面BEF.
又BE平面BEF,所以CD⊥BE.
(2)解:
由题设得,,
又因为,,,
所以,
设点C到平面SBD的距离为h,则由VS—BCD=VC—SBD得,
因为,所以点E到平面SBD的距离为.
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:
0 | |||||
0 | 3 | 0 | 0 |
(1)请将上表数据补充完整,并写出函数的解析式(直接写出结果即可);
(2)根据表格中的数据作出在一个周期内的图像;
(3)求函数在区间上的最大值和最小值.