题目内容
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
【答案】
(1)解:设
∵ ∥ 且| |=2
∴ ,
∴x=±2
∴ =(2,4)或 =(﹣2,﹣4)
(2)解:∵( +2 )⊥(2 ﹣ )
∴( +2 )(2 ﹣ )=0
∴2 2+3 ﹣2 2=0
∴2| |2+3| || |cosθ﹣2| |2=0
∴2×5+3× × cosθ﹣2× =0
∴cosθ=﹣1
∴θ=π+2kπ
∵θ∈[0,π]
∴θ=π
【解析】(1)设出 的坐标,利用它与 平行以及它的模等于2 ,待定系数法求出 的坐标.(2)由 +2 与2 ﹣ 垂直,数量积等于0,求出夹角θ的余弦值,再利用夹角θ的范围,求出此角的大小.
练习册系列答案
相关题目