题目内容
【题目】若3cos(2α+β)+5cosβ=0,则tan(α+β)tanα的值为( )
A.±4
B.4
C.﹣4
D.1
【答案】C
【解析】解:3cos[(α+β)+α]+5cosβ=0, 即3cos(α+β)cosα﹣3sin(α+β)sinα+5cosβ=0.
3cos(α+β)cosα﹣3sin(α+β)sinα+5cos[(α+β)﹣α]=0,
3cos(α+β)cosα﹣3sin(α+β)sinα+5cos(α+β)cosα+5sin(α+β)sinα=0,
8cos(α+β)cosα+2sin(α+β)sinα=0,
8+2tan(α+β)tanα=0,
∴tan(α+β)tanα=﹣4.
故选C
【考点精析】根据题目的已知条件,利用两角和与差的余弦公式的相关知识可以得到问题的答案,需要掌握两角和与差的余弦公式:.
练习册系列答案
相关题目
【题目】长沙市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对某公司的该产品的销量与价格进行了统计分析,得到如下数据和散点图:
定价 | 10 | 20 | 30 | 40 | 50 | 60 |
年销量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(参考数据: ,
)
(1)根据散点图判断, 与和与哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?
(2)根据(1)的判断结果及数据,建立关于的回归方程(方程中的系数均保留两位有效数字).
(3)定价为多少元/ 时,年销售额的预报值最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.