题目内容
【题目】已知双曲线 ,P为双曲线上一点,F1 , F2是双曲线的两个焦点,且∠F1PF2=60°,求△F1PF2的面积.
【答案】解:由双曲线 的a= ,b=4,c=2 , F2(2 ,0),F1 (﹣2 ,0),
由余弦定理可得,
F1F22=160=PF12+PF22﹣2PF1PF2cos60°
=(PF1﹣PF2)2+PF1PF2=96+PF1PF2 ,
∴PF1PF2=64.
则△F1PF2的面积S= PF1PF2sin60°= ×64× =16 .
故答案为:16
【解析】由题意可得F2(2 ,0),F1 (﹣2 ,0),由余弦定理可得 PF1PF2=64,由△F1PF2的面积S= PF1PF2sin60°,计算即可得到所求.
练习册系列答案
相关题目
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰。今年新春伊始,泉城各医院产科就已经是一片忙碌至今热度不减。卫生部门进行调查统计期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中10个是“二孩”宝宝;
(1)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询,
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(II)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
P(k≥k市) | 0.40 | 0.25 | 0.15 | 0.10 |
k市 | 0.708 | 1.323 | 2.072 | 2.706 |
K2=