题目内容

15.设f(x)是(x2+$\frac{1}{2x}$)6展开式的中间项,若存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使f(x)≤mx成立,则实数m的取值范围是(  )
A.(-∞,$\frac{5}{4}$)B.(-∞,$\frac{5}{4}$]C.($\frac{5}{4}$,+∞)D.[$\frac{5}{4}$,+∞)

分析 由条件利用二项式展开式的通项公式求得f(x)=$\frac{5}{2}$x3.由于存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使m≥$\frac{5}{2}$x2 成立,可得m大于或等于$\frac{5}{2}$x2 在[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]上的最小值.

解答 解:(x2+$\frac{1}{2x}$)6的展开式共有7项,∴中间项为第4项,
∵(x2+$\frac{1}{2x}$)6展开式的通项为Tr+1=${C}_{6}^{r}$•(x26-r•${(\frac{1}{2x})}^{r}$=${(\frac{1}{2})}^{r}$•${C}_{6}^{r}$•x12-3r
令r=3得 T4=$\frac{1}{8}$•${C}_{6}^{3}$•x3=$\frac{5}{2}$x3,∴f(x)=$\frac{5}{2}$x3
∵存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使f(x)≤mx成立,
∴存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使$\frac{5}{2}$x3≤mx成立,
∴存在x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]使m≥$\frac{5}{2}$x2 成立,
∴m大于或等于$\frac{5}{2}$x2 在[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]上的最小值.
当x=$\frac{\sqrt{2}}{2}$时,$\frac{5}{2}$x2 有最小值$\frac{5}{4}$,∴m≥$\frac{5}{4}$,
故选项:D.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,体现了转化的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网