题目内容

【题目】已知椭圆E:=1(a>b>0)的焦距为2 , 且该椭圆经过点(,).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.

【答案】解:(Ⅰ)由题意得,2c=2=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N的纵坐标为0,
故k2=k1=0,这与k2≠k1矛盾.
当k1≠0时,直线PM:y=k1(x+2);
得,
+4)y2=0;
解得,yM=
∴M(),
同理N(),
由直线MN与y轴垂直,则=
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=
【解析】(Ⅰ)由题意得,2c=2=1;从而求椭圆E的方程;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,点N的纵坐标为0,故不成立;当k1≠0时,直线PM:y=k1(x+2);联立方程得(+4)y2=0;从而解得yM=;可得M(),N();从而可得(k2﹣k1)(4k2k1﹣1)=0,从而解得.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网