题目内容

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b及c的长.

【答案】
(1)解:因为cos2C=1﹣2sin2C= ,及0<C<π

所以 sinC=


(2)解:当a=2,2sinA=sinC时,由正弦定理 = ,解得c=4.

由cos2C=2cos2C﹣1= ,及0<C<π 得cosC=±

由余弦定理 c2=a2+b2﹣2abcosC,得b2± b﹣12=0,

解得b= 或b=2

所以b= 或b=2 ,c=4.


【解析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网