题目内容
【题目】如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连结DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(Ⅰ)求证:AB为圆的直径;
(Ⅱ)若AC=BD,求证:AB=ED.
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)由切割线定理得∠PDA=∠DBA,由PG=PD,得∠PGD=∠EGA,所以∠DBA=∠EGA,即B,D,F,G四点共圆,从而∠BDA=∠PFA.而AF⊥EP,所以∠PFA=90°, ∠BDA=90°(2)由AC=BD,可得DC∥AB,所以DC⊥EP,即ED为直径.因此AB=ED.
试题解析:证明 (1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA,
又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.
由于AF⊥EP,所以∠PFA=90°,于是∠BDA=90°.故AB是直径.
(2)连结BC,DC.
由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,
从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又因为∠DCB=∠DAB,
所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,
所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.
练习册系列答案
相关题目