搜索
题目内容
函数
的单调递减区间为( )
A.(
1,1)
B.(0,1]
C.[1,+∞)
D.(
∞,-1)∪(0,1]
试题答案
相关练习册答案
B
试题分析:因为
,所以由
得
.又因为
,所以
.所求函数的单调递减区间为(0,1].
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
设函数
,若函数
在
处与直线
相切,
(1)求实数
,
的值;(2)求函数
上的最大值.
已知函数
在
与
时都取得极值.
(1)求
的值;
(2)若对
,不等式
恒成立,求
的取值范围.
已知函数f(x)=x
2
,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,b
R),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.
已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
函数y=f(x)在定义域(-
,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为( )
A.[-
,1]∪[2,3)
B.[-1,
]∪[
,
]
C.[-
,
]∪[1,2)
D.(-
,-
]∪[
,
]∪[
,3)
若
,其中
.
(1)当
时,求函数
在区间
上的最大值;
(2)当
时,若
,
恒成立,求
的取值范围.
若函数f(x)=
x
3
-
x
2
+ax+4恰在[-1,4]上单调递减,则实数a的值为________.
函数f(x)=3x
2
+ln x-2x的极值点的个数是( )
A.0
B.1
C.2
D.无数个
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总