题目内容
【题目】已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.
(1)求数列和的通项公式;
(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.
【答案】(1).;(2).
【解析】
(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;
(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.
(1)由题意,∴,
三棱锥的体积就是三棱锥的体积,它们都以为底面,因此它们的体积比等于它们高的比,即到平面的距离之比,又都在直线上,
所以点到平面的距离之比就等于棱长的比,
∴,,,
∴.
,则,
时,,也适合.
∴.
(2)由(1),
,
,
两式相减得:
,
∴.
不等式为,即,
设,
则
,
∴当时,递增,当,递减,是中的最大项,.
不等式对恒成立,
则,∴或.
故的范围是.
【题目】近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.
(1)求的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出与的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长 | (0,15] | (15,30] | (30,45] | (45,60] |
人数 | 16 | 45 | 34 | 5 |
在(2)的活动条件下,每个品牌各应该投放多少辆?