题目内容
【题目】为美化城市环境,相关部门需对一半圆形中心广场进行改造出新,为保障市民安全,施工队对广场进行围挡施工.如图,围挡经过直径的两端点A,B及圆周上两点C,D围成一个多边形ABPQR,其中AR,RQ,QP,PB分别与半圆相切于点A,D,C,B.已知该半圆半径OA长30米,∠COD为60°,设∠BOC为.
(1)求围挡内部四边形OCQD的面积;
(2)为减少对市民出行的影响,围挡部分面积要尽可能小.求该围挡内部多边形ABPQR面积的最小值?并写出此时的值.
【答案】(1)(2)围挡内部多边形ABPQR面积的最小值为900平方米,此时
【解析】
(1)连接将四边形变为两个全等的直角三角形,求得的长度后可计算得面积.(2)根据(1)的方法,求得多边形的面积,求得总面积的表达式,利用换元法以及基本不等式求得多边形面积的最小值以及此时的值.
解:
(1)连接OQ,因为QD,QC为圆O的切线,所以QD=QC,OD=OC=30,
OQ=OQ,所以△ODQ≌△OCQ,所以∠DOQ=∠COQ=30°,
又因为OD⊥DQ,所以=tan30°=,所以DQ=10,
所以S△ODQ=OD·DQ=150,所以SOCQD=2S△ODQ =300;
即围挡内部四边形OCQD的面积为300平方米;
(2)BP=OB tan,SOBPC=2S△OBP=900 tan,同理SOARD=2S△OAR=900 tan(-),
SABPQR=900[tan+ tan(-)]+300,
即求 tan+ tan(-)的最小值,
tan+ tan(-)= tan+=(*)
令,由得x(1,4)
则(*)=≥,当且仅当x=2时取等号,此时,
故Smin=900×+300=900,
答:围挡内部多边形ABPQR面积的最小值为900平方米,此时
【题目】某企业三月中旬生产,,三种产品共3000件,根据分层随机抽样的结果,企业统计员制作了如下的统计表格:
产品类别 | |||
产品数量 | 1300 | ||
样本中的数量 | 130 |
由于不小心,表格中,产品的有关数据已被污染得看不清楚,统计员只记得样本中产品的数量比样本中产品的数量多10.根据以上信息,求该企业生产产品的数量.