题目内容
【题目】已知函数(其中).
(1)当时,若函数在上单调递减,求的取值范围;
(2)当,时,
①求函数的极值;
②设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.
【答案】(1);(2)①见解析,②
【解析】
(1)当时,求出导数,分离参数,求出即可;
(2)①时,对进行讨论,根据的导数判断呐喊声的单调性和极值得出结论;
②设切点为,则曲线在点处的切线方程为,当时,切线没有截距,否则表示出截距,结合基本不等式求出截距的范围.
(1)时, 的导函数,
∴由题意知对任意有,即
∴,即.
(2)时, 的导函数,
①(i)当时,有;,
∴函数在单调递增,单调递减,
∴函数在取得极大值,没有极小值.
(ii)当时,有;,
∴函数在单调递减,单调递增,
∴函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.
②设切点为,则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,
∴令,得切线在轴上的截距为
∴当时,
,
当时,,
∴当切线在轴上的截距范围是.
练习册系列答案
相关题目
【题目】某销售公司在当地、两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了、两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.
(1)求的分布列;
(2)以销售食品利润的期望为决策依据,在与之中选其一,应选哪个?