题目内容
【题目】已知y=f(x)是定义在R上的奇函数,且x>0时,f(x)=1+( )x
(1)求函数f(x)的解析式;
(2)画出函数f(x)的草图;
(3)利用图象直接写出函数f(x)的单调区间及值域.
【答案】
(1)解:由题意得,当x=0时,f(0)=0,
当x<0时,则﹣x<0,f(x)=﹣f(﹣x)=﹣( )=﹣1﹣2﹣x,
故f(x)的解析式为:
(2)解:函数草图如右;
(3)解:由图得,减区间为(﹣∞,0),(0,+∞);值域为{y|﹣2<y<﹣1或y=0或1<y<2}
【解析】(1)根据f(x)是定义在R上的奇函数得f(0)=0,当x<0时则﹣x<0,由f(x)=﹣f(﹣x)求出x<0时的解析式,再用分段函数的形式表示出f(x);(2)根据解析式和指数函数的图象,画出该函数的草图;(3)根据函数的图象求出f(x)的单调区间及值域.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.
【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为,求的分布列、数学期望.
参考公式: ,其中.
下面的临界值仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】已知X和Y是两个分类变量,由公式K2= 算出K2的观测值k约为7.822根据下面的临界值表可推断( )
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.推断“分类变量X和Y没有关系”犯错误的概率上界为0.010
B.推断“分类变量X和Y有关系”犯错误的概率上界为0.010
C.有至少99%的把握认为分类变量X和Y没有关系
D.有至多99%的把握认为分类变量X和Y有关系