题目内容
【题目】在四棱锥P-ABCD中,PA平面ABCD,菱形ABCD的边长为2,且,点E、F分别是PA,CD的中点,
(1)求证:EF平面PBC
(2)若PC与平面ABCD所成角的大小为,求C到平面PBD的距离
【答案】(1)证明见详解;(2)
【解析】
(1)取的中点,连接,由三角形中位线的性质可证,即可证明平面平面,从而得证结论.
(2)将点到面的距离问题转化为求三棱锥的高的问题,利用等体积法即可得到答案.
(1)如图取的中点,连接,
因为点E、F分别是PA,CD的中点,
所以分别为和中位线,
所以,
又,
所以平面平面,所以平面
(2)连接交于点,连接.
设点到平面的距离为
因为菱形ABCD的边长为2,且,
所以,且为等边三角形,
所以,且,
因为平面
所以即为直线与平面所成的角,
所以,所以,
又四边形为菱形,所以,
所以,所以
又,
所以的面积为
所以
依题为三棱锥的高,
且的面积为,
所以三棱锥的体积为
,
又因为,所以,解得,
所以点到平面的距离为.
练习册系列答案
相关题目