题目内容

【题目】三棱锥ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,P、Q分别为线段AO,BC上的动点,且AP=CQ,求三棱锥PQCO体积的最大值.

【答案】解:如图所示,∵BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,
∴AO⊥平面BCD,
AO=OC=1,∠OCB=45°.
设AP=x(0<x<1).
= = x.
∴三棱锥PQCO体积V=
=
= = ,当且仅当x= 时取等号.
∴三棱锥PQCO体积的最大值是

【解析】如图所示,由于BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,可得AO⊥平面BCD,AO=OC=1,∠OCB=45°.设AP=x(0<x<1).利用三棱锥PQCO体积V= 及其基本不等式的性质即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网