题目内容

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

【答案】
(1)解:∵A= ,∴由余弦定理可得:

∴b2﹣a2= bc﹣c2

又b2﹣a2= c2.∴ bc﹣c2= c2.∴ b= c.可得

∴a2=b2 = ,即a=

∴cosC= = =

∵C∈(0,π),

∴sinC= =

∴tanC= =2.

或由A= ,b2﹣a2= c2

可得:sin2B﹣sin2A= sin2C,

∴sin2B﹣ = sin2C,

∴﹣ cos2B= sin2C,

∴﹣sin =sin2C,

∴﹣sin =sin2C,

∴sin2C=sin2C,

∴tanC=2.


(2)解:∵ = × =3,

解得c=2

=3.


【解析】(1)由余弦定理可得: ,已知b2﹣a2= c2.可得 ,a= .利用余弦定理可得cosC.可得sinC= ,即可得出tanC= .(2)由 = × =3,可得c,即可得出b.
【考点精析】解答此题的关键在于理解余弦定理的定义的相关知识,掌握余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网