题目内容
5.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.分析 直接利用作差法,然后分析证明即可.
解答 证明:2a3-b3-2ab2+a2b=2a(a2-b2)+b(a2-b2)=(a-b)(a+b)(2a+b),
∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0,
从而:(a-b)(a+b)(2a+b)≥0,
∴2a3-b3≥2ab2-a2b.
点评 本题考查不等式的证明,作差法的应用,考查逻辑推理能力.
练习册系列答案
相关题目
13.将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则( )
A. | 对任意的a,b,e1>e2 | B. | 当a>b时,e1>e2;当a<b时,e1<e2 | ||
C. | 对任意的a,b,e1<e2 | D. | 当a>b时,e1<e2;当a<b时,e1>e2 |