题目内容
(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线
的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足=
,试问直线AB的斜率是否为定值,请说明理由。
解析试题分析:(1)根据离心率等于,它的一个顶点恰好是抛物线
的焦点,易求出a,b的值,得到椭圆C的方程.
(2)设出直线AB的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,求得四边形APBQ的面积,从而可求四边形APBQ面积的最大值;
(3)设直线PA的斜率为k,则PB的斜率为-k,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,即可求得得出AB的斜率为定值.
试题解析:(1)设C方程为(a>b>0),则
。由
,
,得
故椭圆C的方程为
。 4分
(2)①设(
,
),B(
,
),直线AB的方程为
,代入
中整理得
,△>0
-4<
<4,
+
=
,
=
四边形APBQ的面积=
,当
时
②当=
时,PA、PB的斜率之和为0,设直线PA的斜率为
,则PB的斜率为-
,PA的直线方程为
,代入
中整理得
+
=0,2+
=
,
同理2+=
,
+
=
,
-
=
,
从而=
,即直线AB的斜率为定值 13分
考点:1.直线与圆锥曲线的综合问题;2.椭圆的标准方程.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目