题目内容

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

(1)①交点为;②;(2) .

解析试题分析:(1)①本题方法很容易想到,主要考查计算推理能力,写出直线的方程,然后把直线方程与椭圆方程联立,求得点坐标,同理求得点坐标,从而得到直线的方程,令,求出,与无关;②两个三角形∆与∆有一对对顶角,故面积用公式表示,那么面积比就为,即,这个比例式可以转化为点的横坐标之间(或纵坐标)的关系式,从而求出;(2)仍采取基本方法,设的方程为,则的方程为,直线与圆相交于,弦的长可用直角三角形法求,(弦心距,半径,半个弦长构成一个直角三角形),的高为是直线与椭圆相交的弦长,用公式来求,再借助于基本不等式求出最大值及相应的值,也即得出的方程.
试题解析:(1)①因为,M (m,),且
直线AM的斜率为k1=,直线BM斜率为k2=,
直线AM的方程为y= ,直线BM的方程为y=,




据已知,
直线EF的斜率
直线EF的方程为 ,
令x=0,得 EF与y轴交点的位置与m无关.
,,,
,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网