题目内容
已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.
(1);(2)证明过程详见解析.
解析试题分析:本题考查抛物线的标准方程和几何性质、直线的方程、向量的数量积等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力、综合分析和解决问题的能力.第一问,将直线与抛物线方程联立,消去参数,得到关于的方程,得到两根之和两根之积,设出点的坐标,代入到中,化简表达式,再将上述两根之和两根之积代入得出的值,从而得到抛物线的标准方程;第二问,先利用点的坐标得出直线的斜率,再根据抛物线方程转化参数,得到和的关系式,代入到所求证的式子中,将上一问中的两根之和两根之积代入,化简表达式得出常数即可.
试题解析:(Ⅰ)将代入,得. 2分
其中
设,,则
,. 4分
.
由已知,,.
所以抛物线的方程. 6分
(Ⅱ)由(Ⅰ)知,,.
,同理, 10分
所以. 12分
考点:1.抛物线的标准方程;2.韦达定理;3.向量的数量积;4.直线的斜率公式.
练习册系列答案
相关题目