题目内容
设定义域为R的函数f(x)=
,若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则符合题意的a的取值范围是
|
1<a<
或
<a<2.
3 |
2 |
3 |
2 |
1<a<
或
<a<2.
.3 |
2 |
3 |
2 |
分析:程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解x,即要求f(x)=常数有3个不同的f(x),根据题意,先做出函数f(x)的图象,结合图象可知,只有当f(x)=a时,有3个根,再结合方程2f2(x)-(2a+3)f(x)+3a=0有2个不同的实数解,可求
解答:解:方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,
解:∵题中原方程2f2(x)-(2a+3)f(x)+3a=0有且只有5个不同实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=a时,它有三个根.
所以有:1<a<2 ①.
再根据2f2(x)-(2a+3)f(x)+3a=0有两个不等实根,
得:△=(2a+3)2-4×2×3a>0⇒a≠
②
结合①②得:1<a<
或
<a<2.
故答案为:1<a<
或
<a<2.
解:∵题中原方程2f2(x)-(2a+3)f(x)+3a=0有且只有5个不同实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=a时,它有三个根.
所以有:1<a<2 ①.
再根据2f2(x)-(2a+3)f(x)+3a=0有两个不等实根,
得:△=(2a+3)2-4×2×3a>0⇒a≠
3 |
2 |
结合①②得:1<a<
3 |
2 |
3 |
2 |
故答案为:1<a<
3 |
2 |
3 |
2 |
点评:本题考查了函数的图象与一元二次方程根的分布的知识,采用数形结合的方法解决.数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质.
练习册系列答案
相关题目