题目内容

已知无穷数列{an}中,a1a2,…,am是首项为10,公差为-2的等差数列;am+1
am+2,…,a2m是首项为,公比为的等比数列(其中 m≥3,m∈N*),并对任意的n∈N*,均有an+2man成立.
(1)当m=12时,求a2010
(2)若a52,试求m的值;
(3)判断是否存在mm≥3,m∈N*),使得S128m+3≥2010成立?若存在,试求出m的值;若不存在,请说明理由.
(1)a2010a18a12+6
(2),m=45,或15,或9.
(3)不存在mm≥3,m∈N*),使得S128m+3≥2010成立.
解(1)m=12时,数列的周期为24.
∵2010=24×83+18,而a18是等比数列中的项,
a2010a18a12+6
(2)设amk是第一个周期中等比数列中的第k项,则amk
,∴等比数列中至少有7项,即m≥7,则一个周期中至少有14项.
a52最多是第三个周期中的项.
a52是第一个周期中的项,则a52am+7
m=52-7=45;
a52是第二个周期中的项,则a52a3m+7.∴3m=45,m=15;
a52是第三个周期中的项,则a52a5m+7.∴5m=45,m=9;
综上,m=45,或15,或9.
(3)2m是此数列的周期,
S128m+3表示64个周期及等差数列的前3项之和.
S2m最大时,S128m+3最大.
S2m
m=6时,S2m=31-
m≤5时,S2m
m≤7时,S2m=29<
∴当m=6时,S2m取得最大值,则S128m+3取得最大值为64×+24=2007.
由此可知,不存在mm≥3,m∈N*),使得S128m+3≥2010成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网