题目内容
已知
函数
。
(1)求函数
在区间
上最小值
;
(2)对(1)中的
,若关于
的方程
有两个不同的实数解,求实数
的取值范围;
(3)若点A
,B
,C
,从左到右依次是函数
图象上三点,且这三点不共线,求证:
是钝角三角形。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212818907452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819048760.png)
(1)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819063447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819079384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819095491.png)
(2)对(1)中的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819095491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819251283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819266707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819282312.png)
(3)若点A
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819297688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819329669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819438695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819453601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819485544.png)
见解析.
本试题主要考查了导数在函数中的运用。
解:(1)因为f(x)=2
(x-a),所以
=6
-4ax=6x(x-
a).令
=0,得x=0或x=
a.…………2分
①若a<
,即0<
a<1时, 则当1
x
2时,
>0,所以f(x)在区间[1,2]上是增函数, 所以
h(a)=f(1)=2-2a.…………4分
②若![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819625309.png)
a<3,即1![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
a<2时, 则当1
x<
a时,
<0, 当
a<x
2时
>0, 所以f(x)在区间[1,
a]上是减函数, 所以.在区间[
a ,2]上是增函数, 所以.
h(a)=
=
…………6分
③若a
3,即
a
2时,当1
x
2时, ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
0,所以f(x)在区间[1,2]上是减函数, 所以
h(a)=f(2)=16-8a
综上所述,函数f(x)在区间[1,2]上的最小值是
…………8分
(2).因为方程
h(a)=k(a+1)有两个不同的实数解,令y=k(a+1),可得y=h(a)图象与直线y=k(a+1)有两个不同的交点,而直线y=k(a+1)恒过定点(-1,0),由图象可得的取值范围是(-8,-2).…………12分
(3).证明:不妨设
<
<
,由(2)知
>
>
,
=(
-
,
-
),
=(
-
,
-
), 所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820405399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820592202.png)
=(
-
)(
-
)+[
-
],因为
-
<0,
-
>0,
-
>0,
-
<0, 所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820405399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820592202.png)
<0. 又因为A,B,C三点不共线, 所以
,即
为钝角三角形…………16分
解:(1)因为f(x)=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819516338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819516338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
①若a<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819625309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819719168.png)
②若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819625309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819719168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820077553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820093516.png)
③若a
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820109241.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819578310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820109241.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819531503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819672226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819719168.png)
综上所述,函数f(x)在区间[1,2]上的最小值是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232128202491344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820280928.png)
(2).因为方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819719168.png)
(3).证明:不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820311315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820343352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820358531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820389550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820405399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820311315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820358531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820499410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820343352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820389550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820405399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820592202.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820499410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820311315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820343352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820358531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820311315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820343352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820327344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820358531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820389550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820374537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820405399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820592202.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820499410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212820951700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212819485544.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目