题目内容

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网