ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖª¡÷ABCÖУ¬$\overrightarrow{AB}+\overrightarrow{AC}=¦Ë£¨\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|}}£©$£¬ÔòÈý½ÇÐεÄÐÎ×´Ò»¶¨ÊÇ£¨¡¡¡¡£©A£® | µÈÑüÈý½ÇÐÎ | B£® | µÈ±ßÈý½ÇÐÎ | C£® | Ö±½ÇÈý½ÇÐÎ | D£® | µÈÑüÖ±½ÇÈý½ÇÐÎ |
·ÖÎö ÓÉÏòÁ¿µÄÐÔÖʿɵá÷ABCµÄBC±ßÉϵÄÖÐÏßÓë¡ÏBACµÄƽ·ÖÏßÖغϣ¬ÓɵÈÑüÈý½ÇÐεÄÐÔÖÊ¿É×÷³öÅжϣ®
½â´ð ½â£º¡ß$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$ºÍ$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$¾ùΪµ¥Î»ÏòÁ¿£¬
¡à¦Ë£¨$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$£©Óë¡ÏBACµÄƽ·ÖÏßƽÐУ¬
¡à$\overrightarrow{AB}$+$\overrightarrow{AC}$Óë¡ÏBACµÄƽ·ÖÏßƽÐУ¬
ÓÖ¡à$\overrightarrow{AB}$+$\overrightarrow{AC}$ÓëBC±ßÉϵÄÖÐÏßÖغϣ¬
¡à¡÷ABCµÄBC±ßÉϵÄÖÐÏßÓë¡ÏBACµÄƽ·ÖÏßÖغϣ¬
¡à¡÷ABCΪµÈÑüÈý½ÇÐΣ¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÈý½ÇÐÎÐÔÖʵÄÅжϣ¬ÊìÁ·ÕÆÎÕÏòÁ¿µÄÐÔÖÊÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®ÒÑÖª½Ç¦ÁÊÇÈý½ÇÐεÄÄڽǣ¬ÇÒtan¦Á+$\frac{1}{tan¦Á}$=-$\frac{10}{3}$£¬Ôòcos2¦Á=£¨¡¡¡¡£©
A£® | $\frac{3}{4}$ | B£® | -$\frac{3}{4}$ | C£® | ¡À$\frac{4}{5}$ | D£® | $\frac{4}{5}$ |
15£®Éèl±íʾֱÏߣ¬¦Á¡¢¦Â±íʾƽÃ棬ÒÑÖª¦Á¡Í¦Â£¬Ôò¡°l¡Í¦Á¡±ÊÇ¡°l¡Î¦Â¡±µÄ£¨¡¡¡¡£©
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
5£®Õý·½ÌåABCD-A1B1C1D1ÖУ¬ÒìÃæÖ±ÏßACºÍA1DËù³É½ÇµÄÓàÏÒΪ£¨¡¡¡¡£©
A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | 0 |
10£®¶¨Ò壺·Ö×ÓΪ1ÇÒ·ÖĸΪÕýÕûÊýµÄ·ÖÊý³ÆΪµ¥Î»·ÖÊý£®ÎÒÃÇ¿ÉÒÔ°Ñ1·Ö²ðΪÈô¸É¸ö²»Í¬µÄµ¥Î»·ÖÊýÖ®ºÍ£®È磺1=$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$£¬1=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$£¬1=$\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$£¬
ÒÀ´ËÀàÍƿɵãº1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$£¬ÆäÖÐn¡ÊN*£®Éè1¡Üx¡Ü13£¬1¡Üy¡Ün£¬Ôò$\frac{x+y+2}{x+1}$µÄ×îСֵΪ£¨¡¡¡¡£©
ÒÀ´ËÀàÍƿɵãº1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$£¬ÆäÖÐn¡ÊN*£®Éè1¡Üx¡Ü13£¬1¡Üy¡Ün£¬Ôò$\frac{x+y+2}{x+1}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£® | $\frac{23}{2}$ | B£® | $\frac{8}{7}$ | C£® | $\frac{5}{2}$ | D£® | $\frac{34}{3}$ |