题目内容
在区间[0,π]内随机取两个数分别记为a、b,则使得函数f(x)=x2+2ax+b2+π有零点的概率为
A.
B.
C.
D.
阅读下面程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为
如图,圆O为△ABC的外接圆,且AB=AC,过点A的直线交圆O于点D,交BC的延长线于点F,DE是BD的延长线,连接CD.
(Ⅰ)求证:∠EDF=∠CDF;
(Ⅱ)求证:AB2=AF·AD.
设命题p:非零向量a,b,|a|=|b|是(a+b)⊥(a-b)的充要条件:命题q:平面上M为一动点,A,B,C三点共线的充要条件是存在角α,使=sin2α+cos2α,下列命题
①p∧q;
②p∨q;
③p∧q;
④p∨q.
其中假命题的序号是________.(将地热异常有假命题的序号都填上)
已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0,
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)当a=4时,给出两类直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出相应的m或n的值,若不存在,说明理由.
(Ⅲ)设定义在D上函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若在D内恒成立,则称点P为函数y=h(x)的“类对称点”.
令a=4,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
用0.618法进行优选时,若某次存优范围[2,b]上的一个好点是2.382,则b=________.
从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155 cm和195 cm之间,将测量结果分成八组得到的频率分布直方图如下:
(1)试估计这所学校高三年级800名学生中身高在180 cm以上(含180 cm)的人数为多少;
(2)在样本中,若学校决定身高在185 cm以上的学生中随机抽取2名学生接受某军校考官进行面试,求:身高在190 cm以上的学生中至少有一名学生接受面试的概率.
的二项展开式中第二项的系数是________(用数字作答).
已知集合A={0,1,2},B={5,6,7,8},映射f:A→B满足f(0)≤f(1)≤f(2),则这样的映射f共有( )个?
12
20
24
40