题目内容
【题目】函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A.
(1) 求点A的坐标;
(2) 若点A在直线mx+ny+1=0上,其中m,n都是正数,求的最小值.
【答案】(1)定点A的坐标是(-2,-1);(2)8.
【解析】试题分析:(1)根据对数函数的性质可求出A的坐标,
(2)将出A的坐标代入直线方程可得m、n的关系,再利用1的代换结合均值不等式求解即可.
试题解析:
(1) ∵ 仅当x=-2时,函数y=loga(x+3)-1(a>0,a≠1)的函数值与a无关,且此时y=-1,
∴ 定点A的坐标是(-2,-1).
(2) 将点A(-2,-1)的坐标代入mx+ny+1=0,
得(-2)·m+(-1)·n+1=0,2m+n=1,
∵ m,n>0,∴+= (2m+n)=4++≥4+2=8.
等号当且仅当=,即m=,n=时成立.
故当m=,n=时,+取最小值为8.
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(3)学生的学习积极性与对待班极工作的态度是否有关系?请说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】大家知道, 莫言是中国首位获得诺贝尔奖的文学家, 国人欢欣鼓舞.某高校文学社从男女生中各抽取名同学调查对莫言作品的了解程度, 结果如下:
阅读过莫言的作品数( 篇) | |||||
男生 | |||||
女生 |
(1)试估计该校学生阅读莫言作品超过篇的概率;
(2)对莫言作品阅读超过篇的则称为“对莫言作品非常了解” , 否则为“ 一般了解” .根据题意完成下表, 并判断能否在犯错误的概率不超过的前提下, 认为对莫言作品非常了解与性别有关?
非常了解 | 一般了解 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,其中