题目内容
【题目】下列函数中,既是偶函数,又在区间上单调递减的是
A. B.
C. D.
【答案】C
【解析】主要考查函数的单调性和奇偶性.
对于A,函数是偶函数,但在区间上单调递增,故不满足题意;
对于B,函数是奇函数,在R上单调递增,故不满足题意;
对于C,函数是偶函数,在区间上单调递减,故满足题意;
对于D,函数是偶函数,但在区间上有增有减,故不满足题意.故选C.
【规律总结】判断函数的奇偶性,首先求函数的定义域,若定义域不关于原点对称,则函数不具有奇偶性,此时不必求f(-x).当定义域关于原点对称时,若证明函数具有奇偶性,应运用定义,将f(-x)与f(x)进行比较,有时不易变形时,可直接计算f(-x)±f(x),判断其是否为零;若证明函数不具有奇偶性,只需找到一组相反量的函数值,不满足f(-a)=f(a)和f(-a)=-f(a)即可.
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
①若在该样本中,数学成绩优秀率是30%,求的值:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
②在地理成绩及格的学生中,已知, ,求数学成绩优秀的人数比及格的人数少的概率.