题目内容
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
(1)求椭圆的方程;
(2)若是椭圆的左顶点,经过左焦点的直线与椭圆交于、两点,求与的面积之差的绝对值的最大值,并求取得最大值时直线的方程.为坐标原点)
【答案】(1);(2)最大值为,直线的方程为
【解析】
(1)由题意可知:,,根据椭圆的性质:,即可求得和的值,从而求得椭圆方程;
(2)由题意设直线方程,,将直线方程代入椭圆方程,根据韦达定理求得,根据三角形的面积公式,对进行分类讨论,从而求得的最大值,此时即可求出直线方程.
(1)由题意得,即,
因为,即,
又,
故椭圆的方程为:;
(2)设的面积为,的面积为,
设直线的方程为,,,,
由,整理得:,
由韦达定理可知:,
,
当时,,
当时,,
(当且仅当,即时等号成立).
的最大值为,直线的方程为.
【题目】某企业生产一种产品,从流水线上随机抽取100件产品,统计其质量指标值并绘制频率分布直方图(如图):
规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损1元,优等品每件盈利3元,特优品每件盈利5元.以这100 件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.
(1)求每件产品的平均销售利润;
(2)该企业为了解年营销费用(单位:万元)对年销售量(单位:万件)的影响,对近5年年营销费用和年销售量数据做了初步处理,得到如图的散点图及一些统计量的值.
16.30 | 23.20 | 0.81 | 1.62 |
表中,,,.
根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.
①求关于的回归方程;
⑦用所求的回归方程估计该企业应投人多少年营销费,才能使得该企业的年收益的预报值达到最大?(收益=销售利润营销费用,取)
附:对于一组数据,,…,其回归直线均斜率和截距的最小二乘估计分别为,.
【题目】已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:
平均运动时间 | 频数 | 频率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合计 | 300 | 1 |
(1)求抽取的女职工的人数;
(2)①根据频率分布表,求出m、n、p的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;
男职工 | 女职工 | 总计 | |
平均运动时间低于4h | |||
平均运动时间不低于4h | |||
总计 |
②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.
附:K2=,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |