题目内容
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
(1) (2) 随机变量ξ的分布列是
ξ | 0 | 1 | |
P(ξ) |
解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C32对相交棱,因此P(ξ=0)===.
(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(ξ=)==,
于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=,
所以随机变量ξ的分布列是
ξ | 0 | 1 | |
P(ξ) |
练习册系列答案
相关题目