题目内容
【题目】已知函数.
(1)若在处的切线平行于轴,求的值和的极值;
(2)若过点可作曲线的三条切线,求的取值范围.
【答案】(Ⅰ),2,-2;(Ⅱ)
【解析】
试题(Ⅰ)求出原函数的导函数,由f(x)在x=1处的切线平行于x轴,可得f′(1)=0,由此求a的值,把a值代入导函数,求得导函数的零点,由导函数的零点对函数定义域分段,列表得到单调区间,则f(x)的极值可求;(Ⅱ)设出切点(t,t3+at),求导数,利用直线方程点斜式得到切线方程,代入A的坐标,化为关于t的方程,再利用导数求出关于t的函数的极值,由极大值大于0,且极小值小于0联立不等式组求得a的取值范围.
试题解析:(Ⅰ),
∵在处的切线平行于轴, ∴,即.
∴.令,得.
1 | |||||
+ | 0 | - | 0 | + | |
↗ | 极大值 | ↘ | 极小值 | ↗ |
∴,.
(Ⅱ)设切点为,则切线斜率为,
∴切线方程为, ∵点在切线上,
∴, 即. (*)
于是, 若过点A可作曲线的三条切线, 则方程(*)有三个相异的实根根.
记, 则.
当时,,是增函数,
当时,,是减函数,
当时,,是增函数,
∴.
要使方程(*)有三个相异实根, 则即.
练习册系列答案
相关题目