题目内容
【题目】过正方体ABCD﹣A1B1C1D1的顶点A作平面α,使棱AB,AD,AA1所在直线与平面α所成角都相等,则这样的平面α可以作( )
A.1个
B.2个
C.3个
D.4个
【答案】D
【解析】解:在正方体ABCD﹣A1B1C1D1中,
三棱锥A﹣A1BD是正三棱锥,
直线AB、AD、AA1与平面A1BD所成角都相等,
过顶点A作平面α∥平面A1BD,
则直线AB、AD、AA1与平面α所成角都相等,
同理,过顶点A分别作平面α与平面C1BD、平面B1AC,平面D1AC平行,
直线AB、AD、AA1与平面α所成的角都相等,
∴这样的平面α可以作4个.
故答案为:D.
直线AB、AD、AA1与平面A1BD所成角都相等,过顶点A作平面α∥平面A1BD,同理,过顶点A分别作平面α与平面C1BD、平面B1AC,平面D1AC平行,直线AB、AD、AA1与平面α所成的角都相等,
练习册系列答案
相关题目