题目内容
【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
【答案】①④
【解析】对于①,因为f '(x)=2xln2>0恒成立,故①正确
对于②,取a=-8,即g'(x)=2x-8,当x1,x2<4时n<0,②错误
对于③,令f '(x)=g'(x),即2xln2=2x+a
记h(x)=2xln2-2x,则h'(x)=2x(ln2)2-2
存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.
因此,对任意的a,m=n不一定成立.③错误
对于④,由f '(x)=-g'(x),即2xln2=-2x-a
令h(x)=2xln2+2x,则h'(x)=2x(ln2)2+2>0恒成立,
即h(x)是单调递增函数,
当x→+∞时,h(x)→+∞
当x→-∞时,h(x)→-∞
因此对任意的a,存在y=a与函数h(x)有交点.④正确
练习册系列答案
相关题目