题目内容

10.函数f(x)=mx2+(m-1)x是偶函数,则m的值是(  )
A.1B.-1C.2D.0

分析 根据函数f(x)=mx2+(m-1)x是偶函数,可得:函数f(-x)=f(x),进而得到m的值.

解答 解:∵函数f(x)=mx2+(m-1)x是偶函数,
∴函数f(-x)=f(x),
即m(-x)2+(m-1)(-x)=mx2-(m-1)x=mx2+(m-1)x,
∴m=1,
故选:A

点评 本题考查的知识点是二次函数的图象和性质,函数的奇偶性,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网