题目内容

20.已知函数f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命题p:log2[g(x)]≥1是假命题,求x的取值范围;
(Ⅱ)若命题q:?x∈(1,+∞),f(x)<0或g(x)<0为真命题,求m的取值范围.

分析 (Ⅰ)把g(x)代入log2[g(x)]≥1,求解对数不等式和指数不等式得到x的范围,取补集得答案;
(Ⅱ)由题意知?x∈(1,+∞),g(x)<0为假命题,则?x∈(1,+∞),f(x)<0为真命题,然后利用三个二次结合列关于m的不等式组得答案.

解答 解:(Ⅰ)由log2[g(x)]≥1,得log2(2x-2)≥1,即2x-2≥2,解得x≥2.
若命题p:log2[g(x)]≥1是假命题,则1<x<2;
(Ⅱ)∵?x∈(1,+∞),g(x)=2x-2>0,
∴若命题q:?x∈(1,+∞),f(x)<0或g(x)<0为真命题,则
?x∈(1,+∞),f(x)<0,即
?x∈(1,+∞),-(x-2m)(x+m+3)<0,也就是(x-2m)(x+m+3)>0.
即$\left\{\begin{array}{l}{2m≥-m-3}\\{2m≤1}\end{array}\right.$或$\left\{\begin{array}{l}{-m-3≥2m}\\{-m-3≤1}\end{array}\right.$,
解得:-4≤m<-1.

点评 本题考查命题的真假判断,考查了不等式恒成立问题,训练了利用“三个二次”的结合求解参数的范围,属中档题.

练习册系列答案
相关题目
5.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:
(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计(图2)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网