题目内容
【题目】设双曲线 的左右焦点分别为,过的直线分别交双曲线左右两支于点M,N.若以MN为直径的圆经过点且,则双曲线的离心率为( )
A.B.C.D.
【答案】C
【解析】
由题意可得△MNF2为等腰直角三角形,设|MF2|=|NF2|=m,则|MN|m,运用双曲线的定义,求得|MN|=4a,可得m,再由勾股定理可得a,c的关系,即可得到所求离心率.
若以MN为直径的圆经过右焦点F2,
则,又|MF2|=|NF2|,
可得△MNF2为等腰直角三角形,
设|MF2|=|NF2|=m,则|MN|m,
由|MF2|﹣|MF1|=2a,|NF1|﹣|NF2|=2a,
两式相加可得|NF1|﹣|MF1|=|MN|=4a,
即有m=2a,
在直角三角形HF1F2中可得
4c2=4a2+(2a+2a﹣2a)2,
化为c2=3a2,
即e.
故选C.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村扶贫,此帮扶单位为了解该村贫困户对其所提供帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
贫困户 编号 | 评分 | 贫困户 编号 | 评分 | 贫困户 编号 | 评分 | 贫困户 编号 | 评分 | |||
1 | 78 | 11 | 88 | 21 | 79 | 31 | 93 | |||
2 | 73 | 12 | 86 | 22 | 83 | 32 | 78 | |||
3 | 81 | 13 | 95 | 23 | 72 | 33 | 75 | |||
4 | 92 | 14 | 76 | 24 | 74 | 34 | 81 | |||
5 | 86 | 15 | 80 | 25 | 93 | 35 | 89 | |||
6 | 85 | 16 | 78 | 26 | 66 | 36 | 77 | |||
7 | 79 | 17 | 88 | 27 | 80 | 37 | 81 | |||
8 | 84 | 18 | 82 | 28 | 83 | 38 | 76 | |||
9 | 63 | 19 | 76 | 29 | 74 | 39 | 85 | |||
10 | 85 | 20 | 87 | 30 | 82 | 40 | 78 |
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值和方差;
(3)在(2)条件下,若贫困户的满意度评分在之间,则满意度等级为“A级”.运用样本估计总体的思想,现从(1)中抽到的8个样本的满意度为“A级”贫困户中随机地抽取2户,求所抽到2户的满意度评分均“超过85”的概率.(参考数据:,,)
【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过小时 | 不超过小时 | |
男 | ||
女 |
(1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?
(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.
附: