题目内容
【题目】已知函数f(x)=x﹣﹣(a+2)lnx,其中实数a≥0.
(1)若a=0,求函数f(x)在x∈[1,3]上的最值;
(2)若a>0,讨论函数f(x)的单调性.
【答案】(1)函数f(x)在区间[1,3]上的最大值是1,最小值为2﹣2ln2;(2)见解析
【解析】试题分析:
(1)对函数求导,利用导函数与原函数的关系得到最大值是1,最小值为2﹣2ln2;
(2)分类讨论可得 :当a>2时,f(x)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);
当a=2时,f(x)的单调增区间为(0,+∞);
当0<a<2时,f(x)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2).
试题解析:
解:(1)∵f(x)=x﹣2lnx,∴f′(x)=,令f′(x)=0,∴x=2.列表如下,
x | 1 | (1,2) | 2 | (2,3) | 3 | ||||||||||
f'(x) | ﹣ | 0 | + | ||||||||||||
f(x) | 1 | ↘ | 2﹣2ln2 | ↗ | 3﹣2ln3 | ||||||||||
从上表可知,∵f(3)﹣f(1)=2﹣2ln3<0,∴f(1)>f(3),
函数f(x)在区间[1,3]上的最大值是1,最小值为2﹣2ln2;
f′(x)=1+ - ==,
①当a>2时,x∈(0,2)∪(a,+∞)时,f′(x)>0;当x∈(2,a)时,f′(x)<0,
∴f(x)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);
②当a=2时,∵f′(x)= >0(x≠2),∴f(x)的单调增区间为(0,+∞);
③当0<a<2时,x∈(0,a)∪(2,+∞)时,f′(x)>0;当x∈(a,2)时,f′(x)<0,
∴f(x)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2);
综上,当a>2时,f(x)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);
当a=2时,f(x)的单调增区间为(0,+∞);
当0<a<2时,f(x)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2).
【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
年求学花销 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
【题目】某汽车公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年利润(单位:万元)的影响,对近5年的宣传费和年利润()进行了统计,列出了下表:
(单位:千元) | 2 | 4 | 7 | 17 | 30 |
(单位:万元) | 1 | 2 | 3 | 4 | 5 |
员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合与的关系,请你帮助建立关于的线性回归方程;(系数精确到0.01)
(2)小李决定选择对数回归模型拟合与的关系,得到了回归方程: ,并提供了相关指数.请用相关指数说明哪个模型更合适,并预测年宣传费为4万元的年利润.(精确到0.01)(小王也提供了他的分析数据)
参考公式:相关指数
回归方程中斜率和截距的最小二乘估计公式分别为: , .参考数据: , .